Naturalness sum rules at future colliders

Jing Shu ITP-CAS

C. Csaki, F. Ferreira De Freitas, L. Huang, T. Ma, M. Perelstein, J. Shu., arxiv: 1811.01961

Outline

- Electroweak symmetry breaking? Naturelness?
- Natureless sum rule in the non-SUSY and SUSY case.
- How to test naturalness at the 100TeV colldier?
- Outlook

The known "old" physics

The Weinberg-Salam Model

$$\mathcal{L} = \overline{E}_{L}(i \not \partial) E_{L} + \overline{e}_{R}(i \not \partial) e_{R} + \overline{Q}_{L}(i \not \partial) Q_{L} + \overline{u}_{R}(i \not \partial) u_{R} + \overline{d}_{R}(i \not \partial) e_{R} + \overline{Q}_{L}(i \not \partial) Q_{L} + \overline{u}_{R}(i \not \partial) u_{R} + \overline{d}_{R}(i \not \partial) e_{R} + \overline{Q}_{L}(i \not \partial) Q_{L} + \overline{u}_{L}(i \not \partial) u_{R} + \overline{d}_{R}(i \not \partial) e_{R} + \overline{Q}_{L}(i \not \partial) Q_{L} + \overline{Q}_{L}(i \not \partial) Q_{L}$$

The chosen one!

Why God's particle?

Higgs potential

$$V(h) = \frac{1}{2}\mu^2h^2 + \frac{\lambda}{4}h^4$$

EWSB (Higgs mechanism)

$$\langle h \rangle \equiv v \neq 0 \rightarrow m_W = g_W \frac{v}{2}$$

Gives all particles mass

The origin of the mass

Natureless

As a scalar, Higgs has large quantum corrections

$$m_{phys}^2 = m_0^2 + c\Lambda^2 + \dots$$

If no NP particles cancel the quadratic divergence, there are quadratic quantum corrections up to the new physics scale.

Big tuning if \lambda is large

Symmetries could forbid such a quantum correction, by introducing new particles

Linear divergence of electron mass

chiral symmetry positron

$$\delta m_e = \int_{r=\Lambda^{-1}} d^3 r \vec{E}^2 \simeq \alpha \Lambda$$

$$\delta m_e \simeq rac{lpha}{\pi} m_e \log \left(rac{\Lambda}{m_e}
ight)$$

Natureless

BSM guidance "old days"

SUSY

Non-SUSY

	spin		spin
gluon, g	1	gluino $\widetilde{ ilde{g}}$	1/2
W^{\pm} , Z	1	gaugino $ ilde{W}^\pm, ilde{Z}$	1/2
quark	1/2	squark $ ilde{q}$	0
Standard Mod	del particles	superpartners	

top top partner, t'

W, rho meson
Z (W', Z'), etc

In the LHC era, we first search for something new, if there is something, we better check the principle!

Is the new particle cancel the Higgs UV divergence from SM particles?

Indirect information

One-loop \beta function: (also for gluon)

$$\mathcal{L}_{\gamma\gamma} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \sum_{i} \frac{b_i e^2}{16\pi^2} \log \frac{\Lambda^2}{m_i^2} + \cdots ,$$

 $h \to h + v$

I. Low, R. Rattazzi, A. Vichi, arxiv: 0907.5413

I. Low, A. Vichi, arxiv: 1010.2753

$$\mathcal{L}_{h\gamma\gamma} = \frac{\alpha}{16\pi} \frac{h}{v} \left[\sum_{i} 2b_{i} \frac{\partial}{\partial \log v} \log m_{i}(v) \right] F_{\mu\nu} F^{\mu\nu} .$$

Non-SUSY

h is really H H^\dag

More natural

SUSY enhanced hgg

R. Dermisek, I. Low, arxiv: hep-ph/0701235

suppressed hgg

also for strongly 1st EWPT

has to attach external gauge fields, not know how precise is the cancellation

Resonance discovery

Direct test of naturalness would be the discovery of new resonances

Previous, all those resonances searches are in the gauge basis, model dependent, have to know (at least) rough the model and check the complicated mass matrix.

We better test naturalness in the mass basis

Fermion sum rule

$$a_T = -\left|\lambda_t\right|^2 + \mathcal{O}\left(\frac{v^2}{m_T^2}\right)$$

LH model, no quadratic div

C.-R. Chen, J. Hajer, T. Liu, I. Low, and H. Zhang, Testing naturalness at 100 TeV, JHEP 09 (2017) 129, [arXiv:1705.0774].

$$Tr[Y_m M_D] = 0 + \mathcal{O}(v^2)$$

No quadratic div

$$Tr[Y_m M_D^3] = 0 + \mathcal{O}(v^2/M_f^2)$$

No log div

Fermion sum rule

Top sector mass matrix $M_F = M_{F0} + fU(\frac{H}{f}),$

$$M_F = M_{F0} + f U(\frac{H}{f})$$

QD in I-loop CW potential

$$V(H) \sim \text{Tr}[M_F.M_F^{\dagger}]\Lambda^2,$$

$$\frac{\partial^2}{\partial H^2} \text{Tr}[M_F.M_F^{\dagger}]|_{H=0} = 0$$

 $\frac{\partial^2}{\partial H^2} \text{Tr}[M_F, M_F^{\dagger}]|_{H=0} = 0$ No quadratic potential in the mass term

$$H = v + h$$
.

$$\frac{\partial \text{Tr}[M_F.M_F^{\dagger}]}{\partial h}|_{h=0} \frac{\partial \text{Tadpoles}}{\text{Tadpoles}}$$

$$= \left(\frac{\partial (H/f)}{\partial h}|_{h=0} \frac{\partial \text{Tr}[M_F.M_F^{\dagger}]}{\partial (H/f)}|_{H=0} + \frac{\partial (H/f)^2}{\partial h}|_{h=0} \frac{\partial^2 \text{Tr}[M_F.M_F^{\dagger}]}{2\partial^2 (H/f)}|_{H=0} + \mathcal{O}\left(v^2/f^2\right)\right)$$

$$= \frac{\partial (H/f)^2}{\partial h}|_{h=0} \frac{\partial^2 \text{Tr}[M_F.M_F^{\dagger}]}{2\partial^2 (H/f)}|_{H=0} + \mathcal{O}\left(v^2/f^2\right) \tag{2.5}$$

No quadratic divergence

$$\frac{\partial \text{Tr}[M_F.M_F^{\dagger}]}{\partial h}|_{h=0} = 0 + \mathcal{O}(v^2/f^2).$$

mass basis

$$L^{\dagger}M_F|_{h=0}R = M_D \quad L^{\dagger}(\frac{\partial}{\partial h}M_F)|_{h=0}R = Y_M,$$

$$\frac{\partial \text{Tr}[M_F.M_F^{\dagger}]}{\partial h}|_{h=0} = \text{Tr}[Y_M.M_D^{\dagger} + M_D.Y_M] = 0 + \mathcal{O}(v^2/f^2).$$

CP conservation

$$Tr[Y_D.M_D^{\dagger}] = 0 + \mathcal{O}(v^2/f^2).$$

No log divergence

Log divergence

$$\frac{\partial^2}{\partial H^2} \text{Tr}[(M_F.M_F^{\dagger})^2]|_{H=0} = 0$$

 $\operatorname{Tr}\left[(M_F.M_F^{\dagger})^2\right]\log\Lambda^2$

Ignore high order terms beyond 1/f^2

$$\frac{\partial}{\partial h} \operatorname{Tr}[(M_F, M_F^{\dagger})^2]|_{h=0}
= \left(\frac{\partial (H/f)}{\partial h}|_{h=0} \frac{\partial \operatorname{Tr}[(M_F, M_F^{\dagger})^2]}{\partial (H/f)}|_{H=0} + \frac{\partial (H/f)^2}{\partial h}|_{h=0} \frac{\partial^2 \operatorname{Tr}[(M_F, M_F^{\dagger})^2]}{2\partial^2 (H/f)}|_{H=0} + \mathcal{O}\left(v^2/f^2\right)\right)
= \frac{\partial (H/f)^2}{\partial h}|_{h=0} \frac{\partial^2 \operatorname{Tr}[(M_F, M_F^{\dagger})^2]}{2\partial^2 (H/f)}|_{H=0} + \mathcal{O}\left(v^2/f^2\right)
= 0 + \mathcal{O}\left(v^2/f^2\right)$$
(2.12)

$$\frac{\partial}{\partial h} \text{Tr}[(M_F.M_F^{\dagger})^2]|_{h=0} = 2 \text{Tr}[Y_M M_D^{\dagger} M_D M_D^{\dagger} + Y_M^{\dagger} M_D.M_D^{\dagger}.M_D] = 0 + \mathcal{O}(v^2/f^2)$$

CP conservation

$$Tr[Y_M M_D^3] = 0 + \mathcal{O}(v^2/f^2).$$

Gauge sum rule

No quadratic divergence

$$Tr[g_{VVh}] = 0 + \mathcal{O}(v^2/f^2).$$

No log divergence

$$\text{Tr}[g_{VVh}M_V^2] = 0 + \mathcal{O}(v^2/f^2),$$

SUSY Case

$$\operatorname{Tr}[g_{SSh}] - 2\operatorname{Tr}[Y_M M_D^{\dagger} + M_D Y_M^{\dagger}] + 3\operatorname{Tr}[g_{VVh}] = 0,$$

$$Tr[g_{SSh}] - 4Tr[Y_M M_D] + 3Tr[g_{VVh}] = 0.$$

Quadratic divergence

Top sector/stop sector

Gauge/gaugino/Higgs/Higgsino sector

$$\sum_{i} g_{\tilde{t}_{i}\tilde{t}_{i}h} - 4y_{t}m_{t} = 0,$$

$$4\sum_{i} (y_{C_{i}^{+}C_{i}^{-}h} m_{C_{i}} + y_{N_{i}N_{i}h} m_{N_{i}}) - 3(g_{W^{+}W^{-}h} + g_{ZZh})$$
$$-\sum_{i} (g_{H_{i}^{0}H_{i}^{0}h} + g_{H_{i}^{+}H_{i}^{-}h}) - g_{hhh} = 0$$

Examples

Simplest little Higgs SU3/SU2

$$\mathcal{L}_t = -\lambda_1 f \bar{\Psi}_q \mathcal{H} u_{3R} - \lambda_2 f \bar{\tilde{T}}_L \tilde{T}_R + h.c.,$$

$$M_F = -f \begin{pmatrix} \lambda_1 \sin(\frac{H}{\sqrt{2}f}) & 0\\ \lambda_1 \cos(\frac{H}{\sqrt{2}f}) & \lambda_2 \end{pmatrix}.$$

$$Tr[M_F.M_F^{\dagger}]\Lambda^2 = f^2(\lambda_1^2 + \lambda_2^2)\Lambda^2$$

first sum rule

After EWSB

$$m_t = \frac{\lambda_1 \lambda_2 v}{\sqrt{\lambda_1^2 + \lambda_2^2}} + \mathcal{O}(\frac{v^2}{f^2}) \quad m_T = -f \sqrt{\lambda_1^2 + \lambda_2^2} + \mathcal{O}(\frac{v^2}{f^2}).$$

$$y_t = -\frac{m_t}{v} + \mathcal{O}(\frac{v^2}{f^2}) \quad y_T = \frac{y_t^2 v}{m_T}.$$

$$y_t m_t + y_T m_T = 0 + \mathcal{O}(\frac{v^2}{f^2}).$$

Examples

Maximally symmetric composite Higgs SO5/SO4

$$\begin{split} \mathcal{L}_f &= \bar{q}_L i \not\!\!D q_L + \bar{t}_R i \not\!\!D t_R + \bar{\Psi}_Q i \not\!\!\nabla \Psi_Q + \bar{\Psi}_S i \not\!\!\nabla \Psi_S \\ &- \frac{1}{\sqrt{2}} \epsilon_t \bar{\Psi}_{t_R} U \Psi_{+L} - \epsilon_q \bar{\Psi}_{q_L} U \Psi_{+R} - M \bar{\Psi}_{+L} V \Psi_{+R} + h.c, \end{split}$$

Before EWSB

$$M_F = \begin{pmatrix} 0 & \epsilon_q \cos^2\left(\frac{H}{2f}\right) & \epsilon_q \sin^2\left(\frac{H}{2f}\right) & -\frac{\epsilon_q \sin\left(\frac{H}{f}\right)}{\sqrt{2}} \\ \frac{1}{2}\epsilon_t \sin\left(\frac{H}{f}\right) & M & 0 & 0 \\ -\frac{1}{2}\epsilon_t \sin\left(\frac{H}{f}\right) & 0 & M & 0 \\ \frac{\epsilon_t \cos\left(\frac{H}{f}\right)}{\sqrt{2}} & 0 & 0 & -M \end{pmatrix}.$$

$$Tr[M_F.M_F^{\dagger}]\Lambda^2 = (3M^2 + \epsilon_q^2 + \frac{\epsilon_t^2}{2})\Lambda^2$$

$$\operatorname{Tr}[(M_F.M_F^{\dagger})^2]\log\Lambda^2 = (3M^4 + \epsilon_q^4 + \frac{\epsilon_t^4}{4} + (2\epsilon_q^2 + \epsilon_t^2)M^2)\log\Lambda^2.$$

Examples

Maximally symmetric composite Higgs SO5/SO4

After EWSB

$$Y = \left(\frac{\partial}{\partial H} M_F\right)|_{H=v} = \begin{pmatrix} 0 & -\frac{\epsilon_q \sin\left(\frac{v}{f}\right)}{2f} & \frac{\epsilon_q \sin\left(\frac{v}{f}\right)}{2f} & -\frac{\epsilon_q \cos\left(\frac{v}{f}\right)}{\sqrt{2}} \\ \frac{\epsilon_t \cos\left(\frac{v}{f}\right)}{2f} & 0 & 0 & 0 \\ -\frac{\epsilon_t \cos\left(\frac{v}{f}\right)}{2f} & 0 & 0 & 0 \\ -\frac{\epsilon_t \sin\left(\frac{v}{f}\right)}{\sqrt{2}f} & 0 & 0 & 0 \end{pmatrix}$$

$$\operatorname{Tr}[Y_D.M_D^{\dagger}] = \operatorname{Tr}[Y.(M_F^{\dagger})|_{H=v}] = 0$$

$$\text{Tr}[Y_D.M_D^3] = \text{Tr}[Y.(M_F^{\dagger}.M_F.M_F^{\dagger})|_{H=v}] = 0$$

100TeV Collider Test

Collider Test

C.-R. Chen, J. Hajer, T. Liu, I. Low, and H. Zhang, Testing naturalness at 100 TeV, JHEP 09 (2017) 129, [arXiv:1705.0774].

Double production: No sign of the couplings

 $pp \rightarrow t't'h$,

$$pp \rightarrow qht'$$
.

single production: interference

$$pp \rightarrow t^{'}thh.$$

Benchmark-LH

Definition of flipped rate

$$\mathcal{F} = 2 \frac{\sigma(Y_{tt'h}) - \sigma(-Y_{tt'h})}{\sigma(Y_{tt'h}) + \sigma(-Y_{tt'h})}.$$

LH Model
$$\lambda_1 = 1.48, \, \lambda_2 = 1.11 \text{ and } f = 811 \text{ GeV}.$$

Name	Mass [GeV]	Decays	$\sigma(qht')$, fb	$\mathcal{F}(qht')$	$\sigma(t'thh)$, fb	$\mathcal{F}(t'thh)$
t'	1492	Wb: 50% tZ: 25% tH: 25%	185	-13%	14.4	-26%

Table 1. Top partner parameters at the Benchmark Point in the Little Higgs model.

Benchmark-MSCHM

MSH Model $\epsilon_{qQ} = 1.15$, $\epsilon_{tQ} = -1.40$, and MQ = 1500 GeV.

Name	Mass [GeV]	Decays	$\sigma(qht')$, fb	$\mathcal{F}(qht')$	$\sigma(t'thh)$, fb	$\mathcal{F}(t'thh)$		
	t ['] 1791	Zt: 42.92%						
4'		Wb: 26.06%	20.9	26%	14.3	9.9%		
ι		$Zx_2: 12.76\%$				9.970		
	tH: 8.3%							
		tH: 37.51%						
<i>m</i> -	1632	Wb: 32.84%	5.0	-25%	41.7	-45%		
x_2	1032	Zt: 18.33%						
	$Wx_5: 6.08\%$							
		tH: 51.45%						
t_1	1500	Zt: 32.43%	XXX	0	YYY	0		
		WWt: 11.81%	Anothe	NE WOV	of provi	ng MS	ot ce	
			Anoth	zi way	OI PIOVI	ng mo	at CC	

Table 2. Top partner parameters at the Benchmark Point in the Maximally Symmetric Higgs model.

lop partner mass and Br

Measure precision in percent!

Name	Mass $m_{t'}$	$Br(t' \to Zt)$	$Br(t' \to th)$	$Br(t' \to Wb)$	$g_{bt'W}$	$g_{tt'h}$	$Y_{t't'h}$
T (LHT)	1.2	2.4	2.3	2.4	1.2	2.1	2.9
t_2' (MSCH)	0.7	4.4	3.9	8.6	3.2	5.7	6.9
t_3' (MSCH)	0.8	0.8	3.9	1.3	1.9	2.8	7.0

Mass reconstruction: $T \rightarrow Zt$,

both Z's decays leptonically.

hadronic boosted top tagging

$$\frac{\delta \operatorname{Br}(tZ)}{\operatorname{Br}(tZ)} = \frac{1}{2} \left(\frac{\delta N}{N} \oplus \frac{\partial \log \sigma}{\partial \log M_T} \frac{\delta M_T}{M_T} \right).$$

 $Br(T \to th)$

thth events.

one of the Higgs bosons decays to $\gamma\gamma$, the other Higgs decays to bb.

 $Br(T \to Wb)$

both W bosons decay leptonically, resulting in a final state $\ell^+\ell^- + 2b + E_T$.

Preliminary

Before the measurements of diagonal t' Higgs Yukawa couplings, one have to pin down other unknown particles, details see the paper

Preselection:

Channel	Selection Cuts	Results
$(\gamma\gamma) + 2j + X$	$p_T(j^k) \ge 400 \text{ GeV}, k = 1, 2;$	Table 5
	$p_T(\gamma^1) \ge 100 \text{ GeV}; \ p_T(\gamma^2) \ge 50 \text{ GeV}$	
	$m_{\gamma\gamma} \in [120, 130] \text{ GeV}; \ m_{jj} \in [1.0, 2.0] \text{ TeV}$	
$(\ell^+\ell^-) + 2j + X$	Pre-cuts: $p_T(j^k) \ge 400 \text{ GeV}, k = 1, 2;$	Table 6
	$m_{\ell^+\ell^-} \in [80, 100] \text{ GeV}; \ p_T(Z) \ge 400 \text{ GeV};$	
	1 top-tag, 1 Higgs-tag	
	Cut I: $m(j_t \ell^+ \ell^-) \in [1.0, 2.0] \text{ TeV}$	
$(\gamma\gamma) + 3j + X$	$p_T(j^k) \ge 400 \text{ GeV}, k = 13; m_{\gamma\gamma} \in [115, 135] \text{ GeV};$	Table 7
	$\exists i, k \in \{1, 2, 3\} : m(j_i j_k) \in [1.0, 2.0] \text{ TeV}$	

Table 4. Summary of selection cuts used for each of the three channels analyzed in this section. See text for more details.

ML based multi-variables

We proposed 14 variables in this analysis: $m_{t'}$, HT, MET, n_{fj} , n_{j} , leading boosted jet PT PT_{0} , next leading boosted jet PT PT_{1} , n_{b} , PT_{h} , m_{h} , leading boosted jet light boosted jet probability P_{j}^{0} , P_{t}^{0} , P_{j}^{1} , P_{t}^{1} . We already have a lot of data so we do not

Single channel:

Sign determinations

RF: Random Forest methods

Simplified seven parameters: no much difference

Three channels

Process	Pre-cuts	RF I	RF II	σ	Sign σ
LH: $qhT \rightarrow (\gamma\gamma) + 2j +$	2.8×10^3	1540	744		
hjj	1.2×10^{4}	550	1766	42	4.5
tth	6.3×10^{3}	507	1273	42	4.0
$\gamma \gamma j j$	4.8×10^{4}	344	2069		

Table 5. First three columns: Signal and background event numbers in the $\gamma\gamma + 2j + X$ channel in

Process	Pre-cuts	Cut I	RF I	RF II	σ	Sign σ
LH: $qhT \to qh_{bb}Z_{\ell\ell}t_q$	2234	1836	1232	366		
$t_q t_q Z_{\ell\ell}$	1.4×10^{4}	5203	64	431	52	4.2
$Z_{\ell\ell} jj$	5.6×10^{4}	1.9×10^{4}	211	1431		
MSCH: $qht'_3 \to qh_{bb}Z_{\ell\ell}t_q$	586	440	263/70	0, 86/429	23	3.8

Table 6. First four columns: Signal and background event numbers in the $(\ell\ell) + 2j + X$ channel

Three channels

Process	Pre-cuts	RF	σ	Sign σ
LH: $Tthh \rightarrow (\gamma \gamma) + jjj +$	148	126		
ttjh	183	48	14	2.4
ttVh	5.6	1.6		
MSCH: $t_2'thh \rightarrow (\gamma\gamma) + jjj +$	487	467/83	34	8.5

Table 7. First two columns: Signal and background event numbers in the $(\gamma \gamma) + 3j + X$ channel

LH: Yukawa 3% level

Sign significances are all good

MSCHM:

 t_2' , the best channel is $t_2'thh \rightarrow (\gamma\gamma) + 3j + X$, see Table 7;

 t_3' , the best channel is $qht_3' \rightarrow qhZt$, see Table 6.

top partner Yukawa is about 7% for both t'_2 and t'_3 .

Systematic errors may decrease those a few percent

Outlook

- There is a very nice model independent naturalness sum rule in mass eigenstate
- Can be tested in 100TeV, 30ab^-1 with signs in LH & MSCHM
- Can extend to SUSY and other cases

物理意义和预言

$$\Pi_{0,1}^{q,t}$$
 为0

物理 $\Pi_{0.1}^{q,t}$ 为0 Top动能项:没有非线性修正

$$M_t(h) \sim \sin\left(\frac{2h}{f}\right) \left(1 + \frac{1}{2}\sin^2(h/f)\left(\Pi_1^q(0) - \Pi_1^t(0)\right)\right)$$

通过测量mt, tth, tthh, etc可以确定 $\Pi_{0,1}^{q,t}$ 是否为0

发现类顶夸克态,测量它的性质

$${
m Tr}[Y_m M_D] = 0 + {\cal O}(v^2)$$
 对角的Higgs Yukawa和质量

类顶夸克态最轻的是exotic charge (5/3)

$$M_Q + M_S = 0$$

Spin 1/2 Resonances

There are many ways to generate the fermion masses

Bilinear:

$$\mathcal{L} = \lambda \bar{q} q \langle \bar{\Psi} \Psi \rangle$$

techicolor, conformal techicolor, etc

Here we only consider the "partial compositeness"

Linear mixing:

$$\mathcal{L}_{mix} = \lambda \bar{q}_i \mathcal{O}_i \leftarrow$$

 $\mathcal{O}_i \sim U \Psi_i$

Composite operators

Good for flavor physics

 $|\Psi_i|$

Composite fermions sit in the representation of SO(4)

 Q_j bi-doublet

 S_i Singlet

Maximally suppressed the FCNC by the small fermion mass

Higgs产生和衰变

Higgs物理

Higgs 拟合 $\xi < 0.1$

Top 伴随子的寻找

Top 伴随子的寻找

D. Matsedonskyi, G. Panico, A. Wulzer, JHEP, 1604, (2016) 003.

当前Top伴随子寻 找正在检验原始 的复合Higgs模型

ATLAS Exotics Searches* - 95% CL Exclusion Status: August 2016

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

ι, γ	Jets†	E _T	J.L. at[16			Reference
_						
2 e, µ 1 e, µ - ≥ 1 e, µ 2 e, µ 2 γ 1 e, µ			3.2 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2	Mo 6.58 TeV Ms 4.7 TeV Ms 5.2 TeV Ms 8.7 TeV Ms 8.2 TeV Ms 9.55 TeV G _{KM} mass 2.68 TeV G _{KM} mass 3.2 TeV G _{KM} mass 1.24 TeV G _{KM} mass 360-860 GeV SKR mass 2.2 TeV KK mass 1.46 TeV	n = 2 n = 3 HLZ n = 6 n = 6 $n = 6$, $M_O = 3$ TeV, rot BH $n = 6$, $M_O = 3$ TeV, rot BH $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ $k/\overline{M}_{Pl} = 1.0$ BR = 0.925 Tier (1,1), BR($A^{(1,1)} \rightarrow tt$) = 1	1604,07773 1407,2410 1311,2006 ATLAS-CONF-2016-069 1606,02265 1512,02596 1405,4123 1606,03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-049 1505,07018 ATLAS-CONF-2016-013
-	- 2 b - 1 J 2 J el 2 b, 0-1 j ≥ 1 b, 1 J	Yes Yes Yes	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	Z' mass 4.05 TeV Z' mass 2.02 TeV Z' mass 1.5 TeV W' mass 4.74 TeV W' mass 2.4 TeV W' mass 3.0 TeV V' mass 2.31 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$g_V = 1$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2016-045 1502.07177 1603.08791 ATLAS-CONF-2016-061 ATLAS-CONF-2016-082 ATLAS-CONF-2016-055 1607.05621 1410.4103 1408.0886
– 2 e, μ 2(SS)/≥3 e,	2j - μ≥1 b,≥1 j	Yes	15.7 3.2 20.3	Λ Λ Λ 4.9 TeV	19.9 TeV $\eta_{\ell\ell} = -1$ 25.2 TeV $\eta_{\ell\ell} = -1$ $ C_{RN} = 1$	ATLAS-CONF-2016-069 1607,03669 1504,04605
0 e, μ 0 e, μ, 1 γ 0 e, μ	≥1j 1j 1J,≤1j	Yes Yes Yes	3.2 3.2 3.2	m _A 1.0 TeV m _A 710 GeV M, 550 GeV	g_q =0.25, g_x =1.0, $m(\chi)$ < 250 GeV g_q =0.25, g_x =1.0, $m(\chi)$ < 150 GeV $m(\chi)$ < 150 GeV	1604.07773 1604.01306 ATLAS-CONF-2015-080
2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	$\beta = 1$ $\beta = 1$ $\beta = 0$	1605.06035 1605.06035 1508.04735
1 e, µ	≥ 1 b, ≥ 3 ≥ 2 b, ≥ 3 ≥2/≥1 b ≥ 4 j	Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 3.2	T mass 855 GeV Y mass 770 GeV B mass 735 GeV B mass 755 GeV Q mass 690 GeV T _{3/3} mass 990 GeV	T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505,04306 1505,04306 1505,04306 1409,5500 1509,04261 ATLAS-CONF-2016-032
1 γ - - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j	Yes	3.2 15.7 8.8 20.3 20.3 20.3	q' mass 4.4 TeV q' mass 5.5 TeV b' mass 2.3 TeV b' mass 1.5 TeV \(\text{'}\) mass 3.0 TeV \(\text{'}\) mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_Q = 1$ $\Lambda = 3.0 \text{TeV}$ $\Lambda = 1.6 \text{TeV}$	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
2 e, μ 2 e (SS) 3 e, μ, τ 1 e, μ	2 j - 1 b - -	Yes - - - Yes - -	20.3 20.3 13.9 20.3 20.3 20.3 7.0	## mass 950 GeV N mass 2.0 TeV H mass 570 GeV H mass 400 GeV spin-1 invisible particle mass 657 GeV monopole mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1 1	$m(W_R) = 2.4$ TeV, no mixing DY production, BR $(H_L^{p_1} \rightarrow ee)=1$ DY production, BR $(H_L^{p_2} \rightarrow \ell r)=1$ $a_{non-rel} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1407.8150 1506.06020 ATLAS-CONF-2016-051 1411.2921 1410.5404 1504.04188 1509.08059
	$1e, \mu$ $ 2e, \mu$ $2y$ $1e, \mu$ $2y$ $1e, \mu$ $ 1e, \mu$ $2e, \mu$ 2τ $ 1e, \mu$ $0e, \mu$ 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 e μ 1 j	1

ttbar Higgs

Summary of the ttH signal strength measurements (left) and upper limits (right).

